Linear response on a Quantum Computer

Alessandro Roggero & Joseph Carlson (LANL)

figure from JLAB collab.

Inclusive cross section and the response function

xsection completely determined by response function

$$R(q,\omega) = \sum_{f} \left| \langle f | \hat{O}(q) | 0 \rangle \right|^{2} \delta \left(\omega - E_{f} + E_{0} \right)$$

 \bullet excitation operator $\hat{O}(q)$ specifies the vertex

Same structure not only in NP but also condensed matter, cold atoms,...

Inclusive cross section and the response function

xsection completely determined by response function

$$R(q,\omega) = \sum_{f} \left| \langle f | \hat{O}(q) | 0 \rangle \right|^{2} \delta \left(\omega - E_{f} + E_{0} \right)$$

 \bullet excitation operator $\hat{O}(q)$ specifies the vertex

Same structure not only in NP but also condensed matter, cold atoms,...

Extremely challenging classically for strongly correlated quantum systems

- limited to small systems
- reliant on approximations that are difficult to control (efficiently)

• use time correlation functions (Terhal&DiVincenzo(2000), Ortiz et al. (2001))

Ingredients for response calculation in frequency space

- an oracle that prepares the ground state (QAA, VQE, Spectral Combing, ...)
- an oracle for time evolution (Berry et al. (2015), Hao Low et al. (2016))

• use time correlation functions (Terhal&DiVincenzo(2000), Ortiz et al. (2001))

Ingredients for response calculation in frequency space

- an oracle that prepares the ground state (QAA, VQE, Spectral Combing, ...)
- an oracle for time evolution (Berry et al. (2015), Hao Low et al. (2016))
- \bullet an oracle that prepares $|E\rangle=\hat{O}(q)|0\rangle$ (Roggero & Carlson (in prep.))

• use time correlation functions (Terhal&DiVincenzo(2000), Ortiz et al. (2001))

Ingredients for response calculation in frequency space

- ullet an oracle that prepares the ground state (QAA, VQE, Spectral Combing, ...)
- an oracle for time evolution (Berry et al. (2015), Hao Low et al. (2016))
- \bullet an oracle that prepares $|E\rangle=\hat{O}(q)|0\rangle$ (Roggero & Carlson (in prep.))

By performing quantum phase estimation (Kitaev(1996), Abrams&Lloyd(1999)) with M ancilla qubits we will measure frequency ν with probability:

$$P(\nu) = \sum_{f} |\langle f|E\rangle|^{2} \,\delta_{M} \left(\nu - E_{f} + E_{0}\right)$$

- finite width approximation of $R(q,\omega)$
- need only $M \sim \log_2{(1/\Delta\omega)}$ ancillae
- ullet evolution time $t \sim Poly({
 m sys.size})/\Delta\omega$

• use time correlation functions (Terhal&DiVincenzo(2000), Ortiz et al. (2001))

Ingredients for response calculation in frequency space

- ullet an oracle that prepares the ground state (QAA, VQE, Spectral Combing, \dots)
- an oracle for time evolution (Berry et al. (2015), Hao Low et al. (2016))
- \bullet an oracle that prepares $|E\rangle=\hat{O}(q)|0\rangle$ (Roggero & Carlson (in prep.))

By performing quantum phase estimation (Kitaev(1996), Abrams&Lloyd(1999)) with M ancilla qubits we will measure frequency ν with probability:

$$P(\nu) = \sum_{f} |\langle f|E\rangle|^{2} \,\delta_{M} \left(\nu - E_{f} + E_{0}\right)$$

- ullet finite width approximation of $R(q,\omega)$
- need only $M \sim \log_2{(1/\Delta\omega)}$ ancillae
- \bullet evolution time $t \sim Poly({\rm sys.size})/\Delta\omega$

Exclusive response for neutrino oscillation experiments

Goals for ν oscillation exp.

- neutrino masses
- accurate mixing angles
- CP violating phase

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

ullet need to use measured reaction products to constrain $E_{
u}$ of the event

Exclusive response for neutrino oscillation experiments

Goals for ν oscillation exp.

- neutrino masses
- accurate mixing angles
- CP violating phase

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

- ullet need to use measured reaction products to constrain $E_{
 u}$ of the event
- ullet after measuring energy ω with QPE, state-register is left in

$$|out\rangle_{\omega} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \omega \pm \Delta\omega$$

Exclusive response for neutrino oscillation experiments

Goals for ν oscillation exp.

- neutrino masses
- accurate mixing angles
- CP violating phase

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

- ullet need to use measured reaction products to constrain $E_{
 u}$ of the event
- ullet after measuring energy ω with QPE, state-register is left in

$$|out\rangle_{\omega} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \omega \pm \Delta\omega$$

STAY TUNED more details coming out soon: Roggero & Carlson (in prep.)

Response functions on classical computers

Bacca et al. (2013) LIT+CC

Lovato et al. (2016) GFMC

Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016)

QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$U|\xi_k\rangle = \lambda_k|\xi_k\rangle$$
, $\lambda_k = e^{2\pi i\phi_k} \quad \Leftarrow \quad U = e^{-itH}$

- starting vector $|\psi\rangle = \sum_k c_k |\xi_k\rangle$
- store time evolution $|\psi(t)\rangle$ in auxiliary register of m qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return λ_k with probability $P(\lambda_k) \approx |c_k|^2$

to get $|GS\rangle$ a good $|\psi\rangle$ is critical

Test on classical computer

ullet after measuting energy u with QPE, state-register is left in

$$|out\rangle_{\nu} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta\omega$$

• we can then measure eg. 1- and 2-particle momentum distributions

Caveat

ullet after measuting energy u with QPE, state-register is left in

$$|out\rangle_{\nu} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta\omega$$

• we can then measure eg. 1- and 2-particle momentum distributions

Caveat

ullet after measuting energy u with QPE, state-register is left in

$$|out\rangle_{\nu} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta\omega$$

• we can then measure eg. 1- and 2-particle momentum distributions

Caveat

ullet after measuting energy u with QPE, state-register is left in

$$|out\rangle_{\nu} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta\omega$$

• we can then measure eg. 1- and 2-particle momentum distributions

Caveat

ullet after measuting energy u with QPE, state-register is left in

$$|out\rangle_{\nu} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta\omega$$

• we can then measure eg. 1- and 2-particle momentum distributions

Caveat

ullet after measuting energy u with QPE, state-register is left in

$$|out\rangle_{\nu} \sim \sum_f \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta\omega$$

• we can then measure eg. 1- and 2-particle momentum distributions

Caveat